Biodiesel and Renewable Diesel Rulemaking 2nd Public Workshop

Lex Mitchell Bob Okamoto May 19, 2010

Overview

- Background
- Biodiesel Studies Update
- Comments from First Workshop
 - Literature Review
 - Fuel Properties
 - Certification
- Next Steps
- Contacts
- Discussion

Driving Forces:

- Global Warming Solutions Act of 2006
- Low Carbon Fuel Standard (2009)
- Increasing demand for biofuels
- Studies show an increase in NOx with increasing biodiesel blends

- What is biodiesel?
 - Straight Vegetable Oil (SVO) vs Fatty Acid
 Methyl Esters (FAME)
 - Feed stocks
- What is renewable diesel?
 - Hydrotreating
 - Feed stocks

May 19, 2010

- Biodiesel and renewable diesel blends:
 - Blends are labeled B% or R% to signify the amount of biodiesel or renewable diesel blended into petroleum diesel
 - Example:
 - B5 is a blend of 5 percent biodiesel and 95 percent petroleum diesel
 - R20 is a blend of 20 percent renewable diesel and 80 percent petroleum diesel

2006-2009

 Multimedia workgroup meetings began, multimedia testing largely completed but ongoing

2010

First public workshop to discuss future regulation in January

Overview

- Background
- Biodiesel Studies Update
- Comments from First Workshop
 - Literature Review
 - Fuel Properties
 - Certification
- Next Steps
- Contacts
- Discussion

May 19, 2010

Biodiesel Studies Update Emissions Studies Update

- Cecert Nox mitigation and impact Study completed-two on-road engines
- TRU study
 - Part one: CARB, Soy B50, Soy B100
 - Changes in engine operation
 - Part two: CARB, Soy B5, Soy B20, B100
- Non-road engine
 - Pre-testing started

Biodiesel Studies Update Emissions Studies Update Cont

- Chassis testing at MTA
 - In-depth emissions testing completed for C15 and MBE4000 equipped trucks
 - Chemical and health effects analysis
 - C15 expected to be completed by the July workshop
 - MBE4000 underway
 - Vehicle three, Cummins ISM equipped truck will start in the first part of June
 - School Bus with DPF

May 19, 2010

Biodiesel Studies UpdateJuly Workshop

- Renewable diesel Tier one draft in June
- Biodiesel multimedia
 - Final Tier one (date)
 - Final Tier two protocol (date)
 - Tier two results
- Durability study
- Engine testing CeCERT
- TRU testing update
- Chassis testing MTA
 - In-depth testing for C15 and upon availability MBE4000

Overview

- Background
- Biodiesel Studies Update
- Comments from First Workshop
 - Literature Review
 - Fuel Properties
 - Certification
- Next Steps
- Contacts
- Discussion

May 19, 2010

Comments from First Workshop

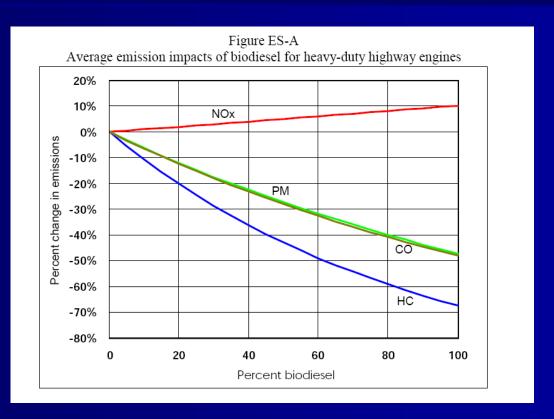
Literature Review

- Clarify and expand NOx impact of biodiesel use.
- CARB's findings on NOx vs literature (esp. B5)
- What is the NOx impact at low blend levels?

Fuel Properties

- Biodiesel Feedstock Effects
- Gas To Liquid (GTL) diesel
- GTL and renewable diesel properties
- Certification

Biodiesel program


- What did we know about the NOx impact of biodiesel use when we started the biodiesel program in 2006?
 - EPA Draft Technical Report
- What was the reason for the CARB study?
- What do we know now?
- What are the next steps?

What did we know about the NOx impact of biodiesel use at the start of the biodiesel program?

- Main reference was the EPA Report on the biodiesel impacts on exhaust emissions
 - Comprehensive review of the literature
 - Analysis of impacts based on base fuel, feedstock, engine class, etc.

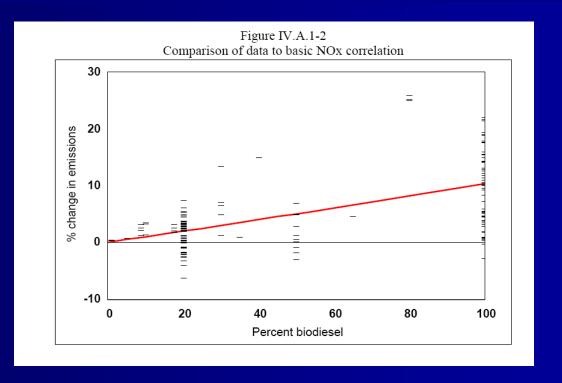

"A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions" Draft Technical Report EPA420-P-02-001, October 2002 (Draft Technical Report)

Figure from
Draft
Technical
Report cited
when
discussing
the NOx
impact from
biodiesel

- 2% increase at B20 and 10% increase at B100
- Qxer, ₂all diesel base fuels

Not discussed as often is the scatter in the NOx trend line.

 To explain the range of results, EPA evaluated the effect of various factors such as base fuel and duty-cycle load effects

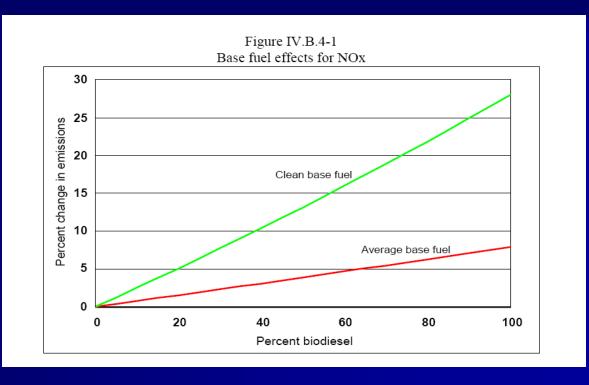
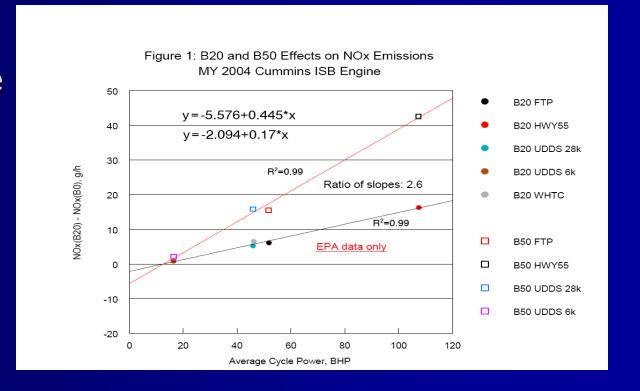

EPA Base Fuel Analysis

Table III.C.2.e-1 Base fuel emission group proposed definitions

- A. All base fuels to which biodiesel is added are assigned to the "average" emission category for the purposes of estimating emission benefits of biodiesel using the correlations in this report, unless
- B1. The base fuel in question meets the requirements for highway diesel fuel sold in California or alternative requirements that are substantially similar to those in California, or
- B2. The fuel in question meets all of the following conditions:
 - 1. Total cetane number is greater than 52
 - 2. Total aromatics content is less than 25 vol%
 - 3. Specific gravity is less than 0.84

For fuels meeting conditions B1 or B2, the base fuel should be assigned to the "clean" category.


EPA found NOx increases more when biodiesel is blended with clean base fuels (e.g., CARB/CARB-like diesel) than with average base fuels

B100: ~27% more NOx than clean diesel, ~7% more NOx than avg. diesel.

B20+clean diesel: ~5% more NOx than clean diesel alone B20+avg. diesel: ~2% more NOx than avg. diesel alone

Another
finding by the
EPA showed
that biodiesel
effects on
NOx
emissions
were related
to average
cycle power

¹Sze et al, 2007

- Why was CARB Biodiesel/Renewable diesel study initiated?
 - EPA finding that biodiesel blended with CARB base fuels show a higher percent increase in NOx
 - Expand limited data set especially newer technology engines
 - Expand limited data set on low biodiesel blend levels
 - Need for more robust studies
 - Run duty-cycles of different loads

Literature Review What do we know now?

- CARB study results
- Literature reviews
- Current literature

Literature Review What do we know now

- CARB biodiesel/renewable study results
 - Study on-going, estimated completion date Sept.
 2010
- Preliminary results
 - CARB study also shows higher NOx impact for CARB base fuels
 - Continue to refine the information as the study nears completion
 - Matches with other research showing base fuels have a significant impact

Literature Review What do we know now?

Literature Reviews

- A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions, EPA report 420-P-02-001, David Korotney, 2002
- NREL Review, "Effects of Biodiesel Blends on Vehicle Emissions", Fiscal Year 2006 Annual Operating plan Milestone 10.4, R. L. McCormick et al., 2006
- Draft Regulatory Impact Analysis: Changes to Renewable Fuel Standard Program, Appendix A, EPA-420-D-09-001, Zoltan Jung, 2009
- CRC Report No. AVFL-17, S. Kent Hoekman, et al., 2009

Literature Review What do we know now?

Reviews Cont

 Of the major literature review studies only the 2002 Draft Technical Report evaluated the effect of clean base fuels

- Review current literature for
 - Trends and mechanism
 - Emissions data low biodiesel blend levels
- Conduct an analysis of clean base fuels
 - CARB diesel base fuels
 - High cetane base fuels
 - Analysis criteria
 - How the analysis results will be reported

Review Current Literature

- Key examples
 - Eckerle, 2008
 - Sze, 2007
 - Cheng, 2006
 - Thompson, 2010
 - Others?

May 19, 2010

Base Fuels Evaluated

- CARB diesel fuels
- High cetane fuels

Analysis results

- Compare biodiesel NOx impact of CARB base fuels with
 - High Cetane base fuels (23 studies)
 - to all diesels base fuels (114)
 - to EPA study results

Comparison to other factors that affect NOx

- If possible will look at other factors; however,
- Limited by small data set which may preclude the following evaluations
 - Feedstock
 - Engine
 - Heavy, Medium, Light duty vehicles
 - On-road and non-road

Literature Review Next Steps-Criteria for Analysis

Selection of studies

- Heavy duty engines, no test engines
- No duplicate studies
- Published in a peer-reviewed journal, by a research center, or company
- Experimental design, no modeled results.

Literature Review Next Steps-Criteria for Analysis

Summary of specifications for fuels used for the analysis

- Base fuel, CN ≥ 48, Aromatics ≤ 21
- Blend is B5, B10, B20
- Biodiesel is made from feedstocks that are an agriculture crop, like soy, or waste stream, like beef tallow.

Literature Review Next Steps-Criteria for Analysis

CARB Baseline Diesel

Suggested studies?

Literature Review CARB Diesel Studies

- 114 articles on biodiesel emission effects
- Considered studies on biodiesel produced from currently available feedstocks (generally soy, canola, rapeseed, palm, yellow grease, animal tallow)

Literature Review Comments Requested

- Specific comments requested on:
 - Methodology of search
 - Selection of CARB representative studies
 - Quality of data

Literature Review Discussion

• Questions or Comments?

Comments from First Workshop

- Literature Review
 - Clarify and expand NOx impact of biodiesel use.
 - CARB's findings on NOx vs literature (esp. B5)
 - What is the NOx impact at low blend levels?

Fuel Properties

- Biodiesel Feedstock Effects
- Gas To Liquid (GTL) diesel
- GTL and renewable diesel properties
- Certification

Fuel Properties Overview

- Two components contribute to NOx emissions
 - Biodiesel Feedstocks and Blendstocks
 - Hydrocarbon Diesel
- Goal: specify properties of each component that are predictors of NOx

Fuel Properties Biodiesel Feedstocks and Blendstocks

- Biodiesel blends have different emissions effects based upon feedstock
 - ARB testing found soy biodiesel increased
 NOx more than animal tallow biodiesel
 - This result is generally supported in literature

Fuel Properties Biodiesel Feedstocks and Blendstocks

- Problems associated with use of feedstock to predict NOx effects:
 - Biodiesel feedstocks are frequently mixed
 - Multiple feedstock properties account for differences in emissions, including saturation, chain length and branching

Fuel PropertiesBiodiesel Feedstocks and Blendstocks

- Can blendstock properties predict feedstock based variation in emissions?
 - Properties of interest:
 - Iodine Number EN 14111
 - H, C and O content ASTM D5291
 - Properties are indicators of saturation, chain length and branching

- Properties of base fuel affect NOx emissions of the blend
- Higher cetane, lower aromatics and lower density base fuels can reduce or eliminate NOx increase

- Specifications for the base fuel:
 - Predictive Model:
 - Used by regulated party for compliance; or
 - Used by ARB to determine compliant specifications

- U.S. EPA Unified NOx Model
 - Strategies and Issues in Correlating
 Diesel Fuel Properties with Emissions
 - http://www.epa.gov/otaq/models/analysis/p01001.pdf

NOx Trend

Hydrocarbon Diesel Base Fuel

NOx Predictors

- •Iodine Number
- •C, H, and O content

Predictive Model:

- Cetane Number
- Aromatics Content
- Density or API Gravity

- High Cetane hydrocarbon fuels:
 - Renewable Diesel
 - Simple mixture of hydrocarbons derived from:
 - Hydrotreatment of biological feedstocks
 - Enzymatic reactions of biological feedstocks
 - GTL & BTL
 - Complex mixture of hydrocarbons derived from syngas from fossil or biological sources

Fuel Properties Comments Requested

- Specific comments requested on:
 - Biodiesel blendstock properties
 - Hydrocarbon diesel properties
 - Model and specifications

Comments from First Workshop

- Literature Review
 - Clarify and expand NOx impact of biodiesel use.
 - CARB's findings on NOx vs literature (esp. B5)
 - What is the NOx impact at low blend levels?
- Fuel Properties
 - Biodiesel Feedstock Effects
 - Gas To Liquid (GTL) diesel
 - GTL and renewable diesel properties
- Certification

- Emissions equivalent certification based upon certification in diesel rules (13 CCR 2282 g)
 - Issues

- Current process uses 1991 DDC Series 60 for testing
- Two primary problems:
 - Engine becoming harder to find in serviceable condition
 - Engine becoming less representative of on-road fleet

- Possible modifications:
 - Newer engine for biodiesel certification program
 - 2006 Cummins ISM

May 19, 2010

- Support for 2006 Cummins ISM:
 - No DPF means accurate PM measurement
 - Cummins is largest engine model in California fleet
 - Biodiesel testing conducted on this engine, large amount of data available

Certification Planned Testing

- Post-rulemaking:
 - Additional testing on mitigation options after rulemaking
 - Testing done to meet requirements of certification, consideration as a certified option

Certification Comments Requested

- Specific comments requested on:
 - Engine choice
 - Framework

Overview

- Background
- Biodiesel Studies Update
- Comments from First Workshop
 - Literature Review
 - Fuel Properties
 - Certification
- Next Steps
- Contacts
- Discussion

Next Steps

- Comments requested Monday, June 21
- Next Workshop (tentatively mid-July)
- Additional Workshops as needed
- Proposal late August
- Board meeting October 2010

Contacts

Lex Mitchell

Air Pollution Specialist (916) 327-1513 amitchel@arb.ca.gov

Robert Okamoto

Staff Air Pollution Specialist (916) 327-2953 rokamoto@arb.ca.gov

Floyd Vergara

Manager, Industrial Section (916) 327-5986 fvergara@arb.ca.gov

http://www.arb.ca.gov/fuels/diesel/altdiesel/biodiesel.htm

Questions & Discussion